
 LIRICS
Deliverable 5.1.E

LIRICS Reference Architecture

Project reference number e-Content-22236-LIRICS

Project acronym LIRICS

Project full title Linguistic Infrastructure for Interoperable
Resource and Systems

Project contact point Laurent Romary, INRIA-Loria

615, rue du jardin botanique BP101.

54602 Villers lès Nancy (France)

romary@loria.fr

Project web site http://lirics.loria.fr

EC project officer Erwin Valentini

Document title LIRICS Reference Architecture

Deliverable ID D5.1.E

Document type Report

Dissemination level Public

Contractual date of delivery M24

Actual date of delivery 7 Feb 2007

Status & version Draft

Work package, task & deliverable responsible WP5, USFD

Author(s) & affiliation(s) Julien Nioche, Adam Funk (USFD)

Additional contributor(s)

Keywords LIRICS Reference Architecture

Document evolution

version date version date

0.1 25/01/06

1.0 30/06/06

2.0 07/02/07

 1

Table of contents

1 Introduction..3

2 DCR implementation ...4
 Use case summary ..4
 Implementing DCR access ...4

3 MAF implementation ...6
 Description...6
 Representing a MAF document in GATE ..7
 Compiling and installing the reference implementation ...8
 Testing the reference implementation ..8

4 LMF implementation..10
 Description...10

5 SynAF implementation..12
 Description...12
 Representing a SynAF document in GATE...12

 2

1 Introduction

This document describes the architecture of the reference implementation of LIRICS.

This reference implementation consists of a set of open-source, web service applications that
carry out various types of linguistic analyses on natural language texts in accordance with the
relevant standards developed in LIRICS and in association with it. These applications are
useful in their own right but also serve to demonstrate the practical usability of the LIRICS
standards.

Each application is deployed according to well-known web service standards (exchanging
XML messages through the SOAP protocol) in order to provide the following benefits:

• interoperability between domains, applications, and users;

• composability of operations (for example, users can program their clients to send the
output from one service as input to another);

• encapsulation and abstraction (the users do not need to be concerned with the details
“behind the scenes”, i.e. how the services work internally).

The reference implementation will be provided for the DCR (Data Category Registry), LMF
(Lexical Markup Framework), MAF (Morphosyntactic Annotation Framework) and SynAF
(Syntactic Annotation Framework) standards, but not for the Semantic Annotation standard.

 3

2 DCR implementation

In order to allow external applications to access the Data Category Registry to browse, search
and select datacategories from the DCR a web based interface has been developed to allow
for these usage scenario’s. A short introduction of the covered use cases is supplied, followed
by a more detailled discussion of the web based service interface.

2.1 Use case summary

The following use cases have been specified and implemented on the SYNTAX DCR server

• Browse catalogue(basic browsing)

o Standard navigation over the DCR is done by selecting a profile of interest
after which a list of data categories are retrieved from the DCR that are part
of this profile. Optionally, a registration status may be specified to limit the
number of data categories to be retrieved from a profile to only those with the
specified registration status.

• Search catalogue

o The DCR may be also searched by specifying the search terms and optional
parameters such as profile to search or data category sections(title,
description etc) to search. An overview of the interaction is shown below.

2.2 Implementing DCR access

The interface interactions described above have been implemented on the SYNTAX server
using a web based service interface (REST). Operations are accessible via parameterized
HTTP requests, results are delivered in xml messages. Additionally a java package has been
developed at the MPI shielding the developer from the intricacies of service request modelling
and xml message deserialization. Calls are made over a standard java interface and results
are delivered as standard java objects. This approach has been used in connecting LEXUS to
the DCR server.

The following operations are available.

• GetProfiles()

o Returns the list of profiles for the DCR

o http://syntax.inist.fr/mod_webservice/call.php?fct=getProfiles

• getDataCategories(a_profile, a_registrationStatus)

o Returns the data categories associated with the specified profile. The
registrationStatus is optional and filters out only the data categories matching
the specified registrationStatus.

 4

o http://syntax.inist.fr/mod_webservice/call.php?fct= getDataCategories&
profile= a_profile & status= a_registrationStatus

• getDataCategory(a_urid)

o Returns the data category identified by the specified urid

o http://syntax.inist.fr/mod_webservice/call.php?fct= getDataCategory& urid=
a_urid

• searchDataCategories(a_listOfKeywords, a_listOfFields, a_profile,
a_registrationStatus)

o Returns the data categories matching the specified parameters

o http://syntax.inist.fr/mod_webservice/call.php?fct= searchDataCategories&
keywords[]= a_keywords & fields[]= a_fields & profile= a_profile & status =
a_registrationStatus

 5

3 MAF implementation

The MAF reference implementation for English and Bulgarian is described here. It has been
implemented as a Web Service, reusing the existing resources for GATE. The reference
implementation will be provided by the deliverable D5.2.C.

The reference implementations for French (INRIA), Italian (CNR), Spanish and German
(DFKI) will be provided by the respective partners.

3.1 Description

The MAF service for English is available from (http://gate.ac.uk/lirics/MAFservice). It is based
on the following GATE processing resources:

- ANNIE English Tokenizer

- ANNIE Sentence Splitter

- ANNIE POS Tagger

- GATE Morphological Analyser

- GateAnnots2MafAnnots

The Part of Speech tagger has been developed by Mark Hepple and is released with GATE. It
uses a slightly modified version of the PennTreebank tagset
(http://www.gate.ac.uk/sale/tao/index.html#x1-368000D).

The morphological analyser generates information about the lemma of words.

The GateAnnots2MafAnnots PR converts the POS tags generated by the tagger into DCR
values. It requires a mapping file and a XML representation of the MAF tagset. Note: there is
no access to the DCR: the values are set once and for all.

As specified in the deliverable D5.1.C “API for morpho-syntactic annotations”, a MAF
compliant service takes as input some text and returns a MAF XML document. The reference
implementation for English and Bulgarian creates a GATE document with the text provided by
the client of the service and runs the processing resources described above. As a result, the
service has a GATE document representing the content of a MAF document. A XML
representation of the document is then generated and returned to the client application.

The reference implementation for Bulgarian uses a different Part of Speech tagger. The
Bulgarian Tree Bank project has provided us with an annotated corpus, which has been used
to generate a statistical model for the TreeTagger (http://www.ims.uni-
stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html). This model has been
made available to the research community on the TreeTagger website. GATE has a plugin for
the TreeTagger, which will be used instead of the default ANNIE tagger for the Bulgarian. The
TreeTagger has already some models for French, German, Italian, English and Spanish,
which means that it would be possible to provide a MAF reference implementation for these
languages using the solution based on GATE. This would only require a mapping file from the
tagsets used by the tagger to DCR values. The mapping file could be used by the
GateAnnots2MafAnnotsPR. The MAF documents generated for the Bulgarian do not have
any information about the lemmas.

 6

http://gate.ac.uk/lirics/MAFservice
http://www.gate.ac.uk/sale/tao/index.html#x1-368000D
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html

documents

3.2 Representing a MAF document in GATE

The reference implementation for English and Bulgarian consists of a web service using
GATE to generate Part of Speech annotations for a text. As explained above, a GATE
document is used to represent the information contained in a MAF document. Such a MAF
GATE Document has a few specificities:

1. The document has a feature named tagset which is a xml representation of the
tagset, as specified in the MAF specification

2. The document contains two types of annotations, Token and Wordform,
corresponding to the respective elements in MAF. The wordform has a feature
named tag, the value of which must be specified in the tagset as well as a feature
lemma.

The Figure 1 shows a MAF document in GATE.

Figure 1 a MAF document in GATE

The Lirics Platform being based on GATE, the document processed by a remote MAFService
will be represented as a MAF GATE document and might be passed to another LIRICS
reference implementation such as SYNAF or processed in a local application.

An intermediate API has been developed by the University of Sheffield for representing a
MAF document, independently from GATE. This is described as the low level API for MAF.
The aim of this API is to represent a MAF document, generate it from a MAF XML but also
generate a XML for a MAF document.

 7

A native implementation of MAF (i.e not based on a web service) would provide an
implementation of this low level API in order to manipulate the content of a MAF document
using a language like Java.

In the reference implementation the low level API is used in order to generate a XML
representation from a MAF GATE document. The XML representation is returned to the client
by the web service.

3.3 Compiling and installing the reference implementation

The reference implementation is available as a set of Java classes. In order to use or compile
the code, you should install Java (http://java.sun.com/) and ANT (http://ant.apache.org/). The
web service can be implemented using Tomcat (http://tomcat.apache.org/).

The code is organised by packages:

• lirics.maf: low level MAF API as a set of interfaces, which would be implemented by
some solution provider.

• lirics.maf.impl : an implementation of the MAF low level API

• lirics.maf.xml : de/serialization of a MAF object from/to MAF XML

• lirics.maf.gate : GATE resources for MAF

The sources also contain a couple of web service related packages:

• lirics.service

• lirics.maf.service.client.maf

The latter contains a set of classes that can be used inside a Java program in order to
communicate with a MAF web service.

The code can be compiled from the root directory of LIRICS by typing ‘ant’. A file named
lirics.jar will be automatically generated.

3.4 Testing the reference implementation

The reference implementation can be tested using the classes located in the package
lirics.maf.service.client.test.

Another way to test the implementation is to load the LIRICS plugin for GATE. For that, load
the CREOLE plugin console of GATE (indicated by <?>), click on “add creole repository” and
enter the location of the LIRICS directory. The LIRICS plugin will be added to the list of
available plugins, the panel on the right will show all the LIRICS Resources available for
GATE, as shown on the Figure 2.

 8

http://java.sun.com/
http://ant.apache.org/
http://tomcat.apache.org/

Figure 2 GATE plugin management console

The MAFServicePR will provide an access to a remote MAF service and can be used inside
a normal GATE application (see GATE documentation).

MAFDocument is not a Processing Resource, but a Language Resource. It gives the
possibility to load a MAF XML document inside GATE and represent it as a MAF GATE
Document (see chapter 3.2 Representing a MAF document in GATE).

The deliverable D5.3.B describes with more details the LIRICS integration platform.

 9

4 LMF implementation

The LMF reference implementation is based on the functionality provided by the LEXUS tool.
LEXUS’s functionality includes creation, reading, updating and removal of LMF related items
and implements the construction mechanism proposed by the ISO/TC 37/SC 4 drafts.
Advanced search functionality is provided allowing users to search multiple heterogeneously
structured lexical resources simultaneously.

To provide the LMF web service functionality it has been decided to open up LEXUS’s core
functionality to allow operations using a web services interface. Specification of this interface
has been done in earlier work as part of this project. Implementation of this interface however
has been delayed due to the fact that a suitable xml exchange format for LMF lexica is
currently still under development. The proposed structure as presented in the LMF ISO
document (Annex R of the ISO/TC 37/SC 4 Rev. 13) is not capable of expressing the
diversity in structural elements in lexica as are encountered within the MPI and other
organizations. In essence it only allows for bundling of lexica that share a common structure.
For exchange purposes in an environment where lexica are structured in various ways, such
as in MPI’s archive, a different approach is needed. This issue is currently being addressed.
Since the goal of the web service interface is to provide access to LEXUS’s functionality and
information exchange will be message based, i.e. information content is transferred as xml
fragments, it is essential that this issue is resolved before implementation of the web service
interface can commence.

4.1 Description

The proposed web service will be based on LEXUS’s functionality which is available at
http://www.mpi.nl/mpi/lexus.

LEXUS’s core functionality consists of the following:

• Flexible lexicon schema creation.
Lexica may be structured according to the researcher’s needs, i.e. language or
theoretical approach.

• Integration of standard data category definitions from data category registries, such
as ISO 12620.

Data categories may be user defined or may be selected from well established
standard concept registries.

• Easy manipulation of lexicon content.
Lexicon content may be crated, modified and removed within structural
constraints.

• Insertion of multimedia content
Multimedia content (audio, images, video, etc) may be added to lexical entries to
create rich multimedia content

• Structural integrity
Integrity of the lexicon structure is adhered to for all content, i.e. lexical entries, of
the lexicon.

• Advanced search capabilities.
Multiple differently structured lexica may be searched simultaneously to allow for
easy comparison and lookup.

• User defined views.
Views on lexical entries are completely customizable by users, both in content to
be displayed as well as look and feel.

 1

http://www.mpi.nl/mpi/lexus

The web service’s functionality is based on some of the core functionality of LEXUS, mainly
schema extraction and lookup facilities.

 1

5 SynAF implementation

The SynAF reference implementation for English is described here. It will be implemented as
a Web Service, largely reusing existing resources for GATE. The reference implementation
will be provided by deliverable 5.2.C.

Reference implementations for Bulgarian, French, German, Italian and Spanish will also be
provided.

5.1 Description

The SynAF service for English will be available as a web service from the host gate.ac.uk. It
will be based on the following GATE components:

• ANNIE English Tokenizer

• ANNIE Sentence Splitter

• ANNIE POS Tagger

• GATE Morphological Analyser

• GateAnnots2SynafAnnots

as described in Sectioon 3.1, as well as a suitable parser to be selected as part of our
development of this implementation. The GateAnnots2SynafAnnots PR will convert the
syntactic tags generated by the parsers into DCR values, based on a mapping file and an
XML representation of the SynAF tagset.

As specified in deliverable D5.1.D (“API for syntactic annotations”), a SynAF service takes as
input a natural-language text (either unannotated or annotated in accordance with the MAF
specification) and returns a SynAF XML document.

Internally, the SynAF reference implementation will generate a GATE document containing
the input text (and if appropriate, the MAF annotations) supplied by the client, and will run the
processing resources listed above, to produce a GATE document representing the content of
a SynAF document; it will then generate an XML representation, which it will return to the
client.

5.2 Representing a SynAF document in GATE

The reference implementation will use a GATE document to represent a SynAF document in
a similar manner to that described for the MAF reference implementation in Section 3.2. The
specifications will be determined as part of the development of the implementation and will be
explained in detail in subsequent deliverables.

As in the MAF case, a native (non-web-service) implementation of SynAF will allow programs
to manipulate SynAF documents through a low-level API.

 1

	1 Introduction
	2 DCR implementation
	2.1 Use case summary
	2.2 Implementing DCR access

	3 MAF implementation
	3.1 Description
	3.2 Representing a MAF document in GATE
	3.3 Compiling and installing the reference implementation
	3.4 Testing the reference implementation

	4 LMF implementation
	4.1 Description

	5 SynAF implementation
	5.1 Description
	5.2 Representing a SynAF document in GATE

