&Mm LIRICS

Deliverable D.5.1.C

API for morpho-syntactic annotations

Project reference number

e-Content-22236-LIRICS

Project acronym

LIRICS

Project full title

Linguistic Infrastructure for Interoperable

Resource and Systems

Project contact point

Laurent Romary, INRIA-Loria
615, rue du jardin botanique BP101.
54602 Villers Iés Nancy (France)

romary@loria.fr

Project web site

http://lirics.loria.fr

EC project officer

Erwin Valentini

Document title

API for morpho-syntactic annotations

Deliverable ID D.5.1.C
Document type Report
Dissemination level Public
Contractual date of delivery M12

Actual date of delivery 21/12/2005
Status & version 1.0

Work package, task & deliverable responsible WPS5 - UFSD

Author(s) & affiliation(s)

Julien Nioche, Kalina Bontcheva (UFSD)

Additional contributor(s)

Niraj Aswani, lan Roberts (UFSD)

Keywords APl MAF
Document evolution
version date version ‘ date
0.1 17-10-05
1.0 20-12-05

Content

1 Ta) (e Yo [0 Tox 110 Y o ST PPPTUPUPPPT 3
2 OVEIVIEW OF The AP ..ot e s ettt e e sttt e e e st e e e e e anbbe e e e anbeeeeansbeeesannees 3
21 F Y VTS T I oF Lo < U 3
2.1.1 Local access t0 anative MAF SYSTEIM ... e e e s e e e e s e aaaee s 3
2.1.2 ConNection t0 @ MAF WED SEIVICEoiiiiiiiiie ittt ettt e e st e e st e e e s snbe e e e s sbaeeaes 3
2.2 F N IS (=Y =0 |V T T (0 SRR 4
3 N (=T =T o =23 PR PPP 5
4 MAF SEIVICE AP . 6
4.1 (o185 0 o] e Lo Y gu=Te | M= T g Yo TUF=To 1= 2 S PO PP PP PP P PPPP 6
4.2 (o0 T aTo) ¢4 [0 o IO PO PP T PPPRPN 6
Annex A MAF Service WSDL deSCIIPLION ..ottt e e e e e e s s e anb bt e e e e e e e e e e snnneeeaaaaaas 7
Annex B Relax NG compact SChemMa fOr IMAF ...t a e e e e e 9

1 Introduction

This document specifies the Application Programming Interface (API) for the Morpho-
Syntactic Annotation Framework (MAF). It is currently based on the ISO TC 37/SC 4 N119
Rev. 2 document.

This document follows the guidelines of the LIRICS deliverable D1.1 (“Guidelines and tools
for producing standards, test-suites and API's").

2 Overview of the API

The LIRICS deliverable D1.1 (“Guidelines and tools for producing standards, test-suites and
API's”) distinguishes between two levels of API:

e Service API for interactions with a processor (i.e. web services, local program)

e Linguistic Content API for manipulating the linguistic content returned by a
processor

2.1 APl use cases

In this chapter we describe how the MAF API fits in different architectures.

2.1.1 Local access to a native MAF system

In this case the MAF system is directly accessible by the user application. Both programs are
running on the same machine and are using the same implementation language. The MAF
system runs as a library within the user application. The user application sends a
representation of the document to be processed and gets in return an instance of the MAF
Linguistic API objects in the implementation language of the user application. This approach
is shown in Figure 1.

Linguistic
User API | MAF web service
application operation

F Y

Figure 1 Direct access

2.1.2 Connection to a MAF Web Service

The MAF system runs on a remote server and is accessible through a Web Service. This
approach is the one chosen in the context of the LIRICS project. The reference
implementation will be remote-access-based.

A WSDL file describes the syntax and location of the annotation service. The user application
sends a representation of a document to this service. The information returned can be of two

types:

1. Serialised objects: the annotation service returns a set of serialized objects. These
objects implement the MAF Linguistic API. The user application de-serialises the
objects and uses them directly as in 3.3.1. This approach is not chosen in the LIRICS
project, since it requires that the user application and service use the same
implementation language, which is not a portable solution.

2.

XML serialisation: the annotation service returns a XML representation of the MAF
document. This approach is illustrated by the Figure 2 .

WSDL

User : | MAF web service
application operation

XML content

Figure 2 Remote access based on XML

The user application developer can choose whether to use this XML representation
directly or to convert it into a MAF Linguistic APl implementation. The latter requires a
conversion library. After the conversion the MAF information can be accessed directly
as in 3.3.1. This approach is illustrated by the Figure 3.

WSDL

User
application

MAF web service
operation

F 3

XML content

MAF
Linguistic
API

Figure 3 Remote access with conversion to a linguistic API

2.2 APl strategy in LIRICS

The MAF linguistic API can be defined on the basis of the MAF model and implemented in a
given language. As described in the sections above, instances of a linguistic APl can be
obtained:

1.

3.

directly from a MAF compliant system, provided that the system is loaded by the user
code (see 3.3.1)

from a web-service returning serialized objects in the same programming language
as the user code (see 3.4.2-1)

after converting the XML information returned by a web service (see 3.4.2 - 2)

In the context of the LIRICS project the MAF API is specified as a service API. Thus it will be
language-independent and will be defined on the basis of web services in order to support
distributed NLP resources. Dealing with XML content also leaves more choice to the client
application in handling the content.

3 References:

e Morpho-Syntactic Annotation Framework (MAF) ISO TC 37/SC 4 N119 Rev. 2
document

e LIRICS deliverable D1.1 Guidelines and tools for producing standards, test-
suites and API's

e Web Service Definition Language (WSDL) http://www.w3.0org/TR/wsdl

e |SO 639-2 http://www.id3.0rg/iso639-2.html

http://www.w3.org/TR/wsdl
http://www.id3.org/iso639-2.html

4 MAF Service API

As specified in the LIRICS deliverable D1.1, the service API is described with a WSDL file.
The WSDL for MAF Services is provided in Annex A.

The Web Services Description Language (WSDL) is an XML format for describing network
services as a set of operations on messages containing either document-oriented or
procedure-oriented information. The operations and messages are described abstractly, and
then bound to a concrete network protocol and message format to define an endpoint.
Related concrete operations are combined into services.

The content of the messages is the lexical information returned by a MAF server and will be in
XML format. The XML format of this information is described in the MAF norm and
reproduced in Annex B. In the WSDL file, references to the MAF XML elements are done
through their namespace only. This way, the independence between the API description and
the XML representation of MAF is preserved.

The MAF service APl is based on procedures and has 2 operations:

4.1 getSupportedLanguages

This operation returns a list of character strings indicating the languages supported by the
MAF service. The codes returned are compliant with ISO 639-2 and are 3-character long and
lowercase.

The code for English, for instance, is 'eng’, French is 'fre’, German is 'ger’.

4.2 getAnnotation

This operation takes two arguments: a first character string representing the textual content
document to be annotated, in a raw text form, without any linguistic annotations or file format
data, and second, a string containing an ISO 639-2 code for the language of the document.

The character strings are represented in the SOAP XML message and thus must be in the
same encoding as the SOAP message. The recommended encoding is UTF-8. However,
most users are lickely to connect to a MAF Web Service using an existing toolkit (e.g.
http://ws.apache.org/axis/ for Java) which will handle the encoding automatically.

The operation returns an XML representation of an annotated MAF document. This document
will be compliant with the RELAX-NG schema in Annex B, which is specified in the MAF norm.

http://ws.apache.org/axis/

Annex A MAF Service WSDL description

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions xmins:wsdI="http://schemas.xmlsoap.org/wsdl/"
xmlins:tns="urn:MAFService"
xmins:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins="http://schemas.xmlsoap.org/wsdl/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="urn:MAFService">
<wsdl:types>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="urn:MAFService">

<import namespace="http://schemas.xmlsoap.org/soap/encoding/" />
<complexType name="ArrayOf_xsd_string">
<complexContent>
<restriction base="soapenc:Array">

<attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:string[]" />

</restriction>

</complexContent>

</complexType=>
<I--

A MAF Docunent is not defined here but referred to by its nanespace

only

-—
<complexType name="MAFDocument">

<sequence=>

<any namespace="http://www.iso.org/maf/1.0" processContents="lax" />

</sequence>

</complexType=>

</schema>

</wsdl:types>

<l--

Returns a list of supported |anguages based on | SO 639-2 codes
-—

<wsdl:message name="getSupportedLanguagesResponse'>
<wsdl:part name="getSupportedLanguagesReturn”

type="tns:ArrayOf_ xsd_string" />
</wsdl:message=>

<wsdl:message name="getSupportedLanguagesRequest" />
<l--
Message sent to the Annotation service. Contains an enpty text
docunent and the iso code for its |anguage
-—>
<wsdl:message name="getAnnotationRequest">
<wsdl:part name="document" type="xsd:string" />
<wsdl:part name="language" type="xsd:string" />
</wsdl:message=>

<I-- MAF Docunent returned by the service --=
<wsdl:message name="getAnnotationResponse'">

<wsdl:part name="getAnnotationReturn" type="tns: MAFDocument " />
</wsdl:message=>

<l-- List of operations supported by a MAF Service -->
<wsdl:portType name="MAFService">
<wsdl:operation name="getSupportedLanguages">
<wsdl:input name="getSupportedLanguagesRequest"
message="tns:getSupportedLanguagesRequest" />
<wsdl:output name="getSupportedLanguagesResponse"
message="tns:getSupportedLanguagesResponse" />
</wsdl:operation>
<wsdl:operation parameterOrder="document language"
name="getAnnotation">
<wsdl:input name="getAnnotationRequest"
message="tns:getAnnotationRequest" />
<wsdl:output name="getAnnotationResponse"
message="tns:getAnnotationResponse" />
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="MAFServiceSoapBinding" type="tns:MAFService">
<wsdlsoap:binding transport="http://schemas.xmlsoap.org/soap/http
style="rpc" />
<wsdl:operation name="getSupportedLanguages">
<wsdIsoap:operation soapAction=" xxxxx " />
<wsdl:input name="getSupportedLanguagesRequest">
<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:MAFService" />
</wsdl:input>
<wsdl:output name="getSupportedLanguagesResponse'>
<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:MAFService" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getAnnotation">
<wsdlsoap:operation soapAction="xxxxx" />
<wsdl:input name="getAnnotationRequest">
<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:MAFService" />
</wsdl:input>
<wsdl:output name="getAnnotationResponse">
<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:MAFService" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
</wsdl:definitions>

Annex B Relax NG compact schema for MAF

$1d: maf.rnc,v 1.1 2005/09/06 08:38:02 clerger Exp $

default namespace = "http://www.iso.org/maf/1.0"
namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

Preliminary Relax NG schema for MAF -- Morpho-syntactic Annotation
Framework
Eric de la Clergerie <Eric.De_La_Clergerie@inria.fr>

The following is for Feature Structures
include "iso-fs-standalone.rnc"

start =
element maf {
(maf.document,
maf.addressing)? ,
tagset ?,
maf.metadata ?,
maf.flow
¥
maf.document = attribute document { xsd:anyURI }
#+# To be defined in LAF
maf.addressing = attribute addressing { xsd:NMTOKEN }
Global Metadata: to be completed
maf.metadata |= notAllowed # to be imported from OLAC
\token =
element token {
attribute id { xsd:ID }?,
token.information,
(
(

attribute from { DocumentLocation },
attribute to { DocumentLocation }
)
| ## DTD =>,
(
[a:defaultValue = "no"]
attribute join { "no" | "left" | "right" | "both" | "overlap" }?,
text
)
)
by

token.information &= attribute form { string }?
token.information &= attribute phonetic { string }?
token.information &= attribute transcription { string }?
token.information &= attribute transliteration { string }?
wordForm =
element wordForm {

wordForm.identification,

wordForm.tokens,

wordForm*,

wordForm.content ?

}

wordForm.tokens =
(attribute tokens { xsd:IDREFS }
| ## DTD => ,
\token*
)
wordForm.identification &= attribute entry { xsd:anyURI } ?
wordForm.identification &= attribute lemma { string } ?
wordForm.identification &= attribute form { string } ?
maf.flow = (\token | wordForm | wordForm.alt | fsm)+
fsm =
element fsm {
(attribute init { fsm.state %},
attribute final { fsm.state }) ?,
(attribute tinit { fsm.state },
attribute tfinal { fsm.state })?,

transition+
b5
fsm.state = xsd:Name
transition =

element transition {
attribute source { fsm.state },
attribute target { fsm.state },
(\token | wordForm | wordForm.alt)
bs
wordForm.alt =
element wfAlt { wordForm+ }
wordForm.content =
(attribute tag { xsd:IDREFS }

| ## DTD => ,
fs
)
fs |= notAllowed # defined in iso-fs-standalone.rnc
tagset =

element tagset {
(attribute ref { xsd:anyURI }
| ## DTD =>,
(dcs* & fsd* & tagset.lib*)
)
by

dcs =
element dcs {
attribute local { xsd:NCName }%},
(attribute registered { xsd:anyURI },
attribute rel { "eq" | "subs" | "gen" })?,
element description { text }*
}
fsd |= notAllowed # defined in future iso-fsd.rnc
tagset.lib |= fvLib
tagset.lib |= fLib
fLib |= notAllowed # defined in iso-fs-standalone.rnc
fvLib |= notAllowed # defined in iso-fs-standalone.rnc
DocumentLocation = xsd:NMTOKEN # defined in LAF

10

	1 Introduction
	2 Overview of the API
	2.1 API use cases
	2.1.1 Local access to a native MAF system
	2.1.2 Connection to a MAF Web Service

	2.2 API strategy in LIRICS

	3 References:
	4 MAF Service API
	4.1 getSupportedLanguages
	4.2 getAnnotation

